Multiparty Conversation Modeling

Maximillian Chen

Advisor: Zhou Yu

Committee: Julia Hirschberg, Kathleen McKeown, Zhou Yu

April 2023

Contents

1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction

4. Conclusions and Looking Ahead

Contents

1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction

4. Conclusions and Looking Ahead

What are Multiparty Conversations?

- Broadly speaking: any conversation that involves more than two or more interlocutors
- Why is this interesting?

Traum, David. "Issues in Multiparty Dialogues"
Afantenos, Stergos et al. "Discourse Parsing for Multi-Party Chat Dialogues"
Gu, Jia-Chen et al. "WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations"

What are Multiparty Conversations?

Who says what to whom?

- Who...
 - is/should be speaking?
- What...
 - is being/should be said?
- Whom...
 - o is being/should be addressed?

Multiparty Conversations Are Complex

 Many attempts to create environments to study these types of questions, e.g. STAC

 This is a complex enough context that can only be represented as a graph

234 235 236 237 238 239	18:55:02:745 18:55:10:047 18:55:18:787 18:55:23:428 18:55:32:308 18:55:47:845	gotwood4sheep inca CheshireCatGrin gotwood4sheep dmm gotwood4sheep	anyone got wheat for a sheep? sorry, not me nope. you seem to have lots of sheep! yup baaa i think i'd rather hang on to my wheat i'm afraid kk I'll take my chances then	235	QAP 236 ACK	238	
--	--	---	---	-----	-------------------	-----	--

239

- Speaker Identification
 - o who is the speaker?
- Turn-taking
 - rigid interaction like with chatbots, or barge-in?

```
234 18:55:02:745 gotwood4sheep anyone got wheat for a sheep?
235 18:55:10:047 inca sorry, not me
236 18:55:18:787 CheshireCatGrin nope. you seem to have lots of sheep!
237 18:55:23:428 yup baaa
```

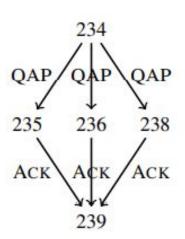
agreeing they have lots of sheep? probably gotwood4sheep!

Traum, David. "Issues in Multiparty Dialogues" Afantenos, Stergos et al. "Discourse Parsing for Multi-Party Chat Dialogues"

Gu, Jia-Chen et al. "WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations"

- Thread Management, Dialogue Disentanglement
- Addressee Recognition

234	18:55:02:745	antwood/shoon	anyona gat subaat for a shaan?
		gotwood4sheep	anyone got wheat for a sheep?
235	18:55:10:047	inca	sorry, not me
236	18:55:18:787	CheshireCatGrin	nope. you seem to have lots of sheep!
237	18:55:23:428	gotwood4sheep	yup baaa
238	18:55:32:308	dmm	i think i'd rather hang on to my wheat i'm afraid
239	18:55:47:845	gotwood4sheep	kk I'll take my chances then


234 QAP QAP QAP 235 236 238 ACK ACK ACK 239

We can infer 236 is addressing gotwood4sheep

Traum, David. "Issues in Multiparty Dialogues"
Afantenos, Stergos et al. "Discourse Parsing for Multi-Party Chat Dialogues"
Gu, Jia-Chen et al. "WHO Says WHAT to WHOM: A Survey of Multi-Party Conversations"

- Discourse Parsing
 - discourse relations
 - discourse links

234	18:55:02:745	gotwood4sheep	anyone got wheat for a sheep?
235	18:55:10:047	inca	sorry, not me
236	18:55:18:787	CheshireCatGrin	nope. you seem to have lots of sheep!
237	18:55:23:428	gotwood4sheep	yup baaa
238	18:55:32:308	dmm	i think i'd rather hang on to my wheat i'm afraid
239	18:55:47:845	gotwood4sheep	kk I'll take my chances then

Afantenos, Stergos et al. "Discourse Parsing for Multi-Party Chat Dialogues"

- Attention Management
 - when to bring new participants into the conversation

system engages bystander $\sim t_5$

Traum, David. "Issues in Multiparty Dialogues" Bohus, Dan and Eric Horvitz. "Models for Multiparty Engagement in Open-World Dialog"

- Initiative Management
 - "Leaders" in the conversation develop either formally/informally

system engages bystander $\sim t_5$

Traum, David. "Issues in Multiparty Dialogues" Bohus, Dan and Eric Horvitz. "Models for Multiparty Engagement in Open-World Dialog"

Difficulties of Multiparty Evaluation

- Ensure systems maintain correct long-term context
- Respond fairly
- Understand whether systems are contributing to conversational "success"

	Violation of Form	Violation of Content		
Utterance	(I1) Uninterpretable	(I3) Semantic error		
Otterance	(I2) Grammatical error	(I4) Wrong information		
	(I5) Ignore question	(I9) Ignore expectation		
Response	(I6) Ignore request	(18) Forgot speaker		
Kesponse	(I7) Ignore proposal	, , 0 1		
	(I8) Ignore greeting	(I19) Forgot addressee(s)		
	(I10) Unclear intention	(I13) Self-contradiction		
Context	(I11) Topic transition error	(I14) Contradiction		
	(I12) Lack of information	(I15) Repetition		
Society	(I16) Lack of sociality	(I17) Lack of common sense		
D4!-! 4	(I20) Wrong speaker	(I22) Wrong thread response		
Participant	(I21) Wrong addressee(s)	(123) Inappropriately timed initiative		

Mahajan, Khyati et al. "Towards Evaluation of Multi-party Dialogue Systems"

Difficulties of Multiparty Evaluation

 System credits the wrong speaker with information U1: We need to consider factors A and B for making a decision in case X.

U2: Factor C would also be interesting and important to consider along with A and B.

S: U1 mentions factors C will be taken into consideration for case X.

Mahajan, Khyati et al. "Towards Evaluation of Multi-party Dialogue Systems"

Difficulties of Multiparty Evaluation

 System replies to the wrong conversation thread

- U1: This football season has been going great!
- U2: I agree, for most teams anyway. Which one is your favorite?
- U3: I prefer soccer instead. Anyone here a soccer fan?
- U4: I don't really pay much attention to sports. My main hobby is movies!
- U5: Yeah, and Knives Out was a great one!
- S: I agree U5! The Rams are doing so well this year!

Mahajan, Khyati et al. "Towards Evaluation of Multi-party Dialogue Systems"

Contents

- 1. Overview: What are Multiparty Conversations?
 - a. Definitions
 - b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction

4. Conclusions and Looking Ahead

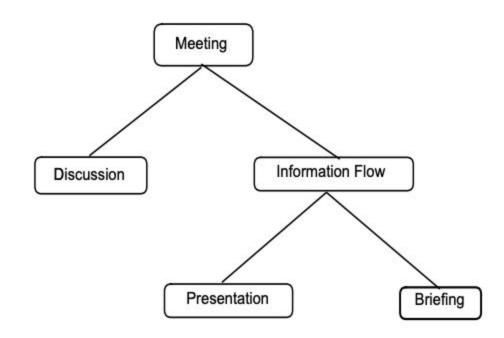
- Building conversational agents which are...
 - o intelligent, personable, adaptive

- Building conversational agents which are...
 - o intelligent, personable, adaptive
- Before even performing generation itself...

- Building conversational agents which are...
 - o intelligent, personable, adaptive
- Before even performing generation itself...
 - what are the subconversations it can respond to?

- Building conversational agents which are...
 - intelligent, personable, adaptive
- Before even performing generation itself...
 - what are the subconversations it can respond to?
 - o who is participating in the conversation?

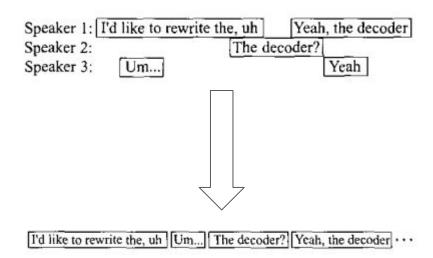
dialogue disentanglement


- Building conversational agents which are...
 - intelligent, personable, adaptive
- Before even performing generation itself...
 - what are the subconversations it can respond to? dialogue disentanglement
 - who is participating in the conversation? persona understanding/speaker ID
 - what have the participants already said?

- Building conversational agents which are...
 - intelligent, personable, adaptive
- Before even performing generation itself...
 - what are the subconversations it can respond to? dialogue disentanglement
 - who is participating in the conversation? speaker ID/persona understanding
 - what have the participants already said? discourse parsing

CMU Meetings Corpus

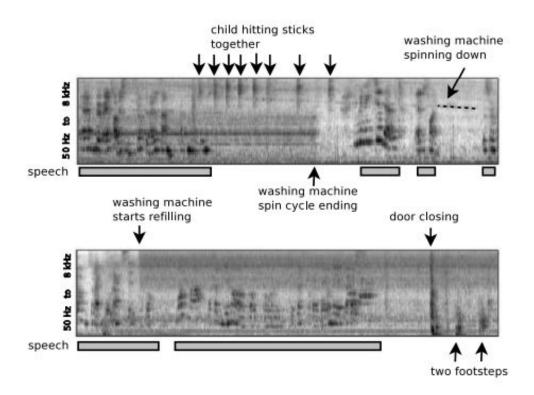
- Audio data from 30 min meeting
- Meeting state and participant role taxonomy
- Early attempt at defining multiparty conversation structures



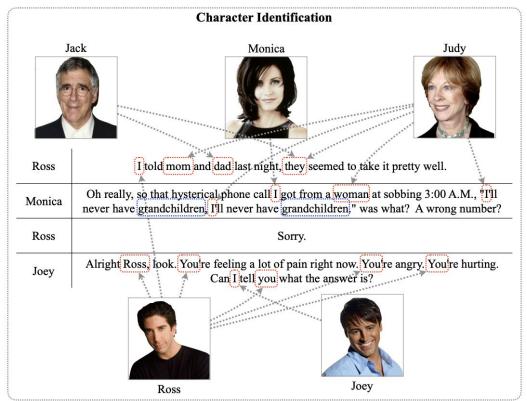
Banerjee, Satanjeev and Alexander I. Rudnicky. "Using Simple Speech-Based Features to Detect the State of a Meeting and the Roles of the Meeting Participants"

ICSI Meeting Corpus

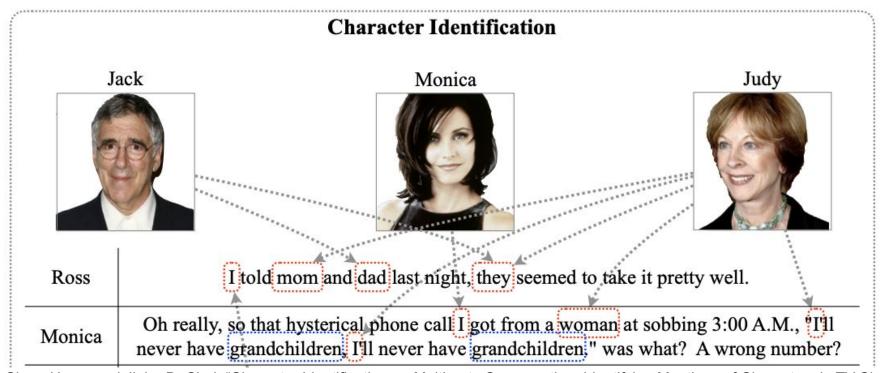
53	Unique speakers	#	Education Level
13	Female	21	Grad
40	Male	20	PhD
#	Age	7	Professor
18	20-29	4	Undergrad
18	30-39	1	Postdoc
4	40-49	#	Variety of English
4	50-59	36	American
1	60+	6	British
8	Unspecified	2	German
#	Native Language	2	Indian
28	English	1	Czeck
12	German	1	Norwegian
5	Spanish	5	Unspecified
1	Chinese	#	Time Spent in English
1	Czeck		Speaking Country
1	Dutch	9	< 1 Year
1	French	3	1-2 Years.
1	Hebrew	4	2-5 Years
1	Malayalam	6	> 5 Years
1	Norwegian	3	Unspecified
1	Turkish		5)


- Large audio+text meeting corpus
- Overlaps in speech help with speaker identification

Janin, Adam et al. "The ICSI Meeting Corpus"


Computational Hearing in Multisource Environments (CHiME)

- 40 hours of audio data from domestic environment
- Natural and controlled levels of noise


Christensen, Heidi et al. "The CHiME corpus: a resource and a challenge for Computational Hearing in Multisource Environments"

Multiparty Conversation Character Identification

Chen, Henry and Jinho D. Choi. "Character Identification on Multiparty Conversation: Identifying Mentions of Characters in TV Shows"

Multiparty Conversation Character Identification

Chen, Henry and Jinho D. Choi. "Character Identification on Multiparty Conversation: Identifying Mentions of Characters in TV Shows"

Multiparty Conversation Character Identification


MDM	TST	Document: episode					Document: scene				
TRN	151	FC	EC	UC	UM	Purity	FC	EC	UC	UM	Purity
Stanford mu	lti-pass sieve	46	53	38.64	16.33	45.97	38	60	22.15	5.97	64.01
Stanford en	tity-centric	36	60	32.59	8.41	38.78	26	60	8.85	1.49	44.12
	F1	19	30	30.23	4.20	61.13	21	30	4.94	1.35	54.11
F1	F2	12	24	40.00	3.15	42.13	17	24	17.91	4.86	51.58
	B1	9	14	0.00	0.00	75.99	14	14	6.25	1.90	70.10
	F1	20	30	39.39	7.52	69.92	20	30	10.11	2.72	56.28
	F2	18	24	49.06	8.25	62.54	23	24	7.46	2.12	57.64
F1+F2	B1	12	14	51.52	12.69	72.16	14	14	10.87	4.56	67.11
	F1+F2	30	46	42.24	7.54	66.65	26	46	9.26	1.83	45.11
	F1+F2+B1	39	60	44.22	8.44	67.67	30	60	7.76	1.35	41.79
B1	B1	11	14	25.00	1.90	80.08	12	14	14.00	5.47	72.83
	F1	25	30	21.67	4.06	73.21	20	30	9.41	3.15	51.74
	F2	25	24	29.17	3.64	64.62	25	24	5.80	1.34	58.79
F1+F2+B1	B1	9	14	20.00	1.31	71.29	15	14	6.67	1.33	69.45
	F1+F2	39	46	24.76	3.78	69.60	29	46	7.62	1.74	44.49
	F1+F2+B1	45	60	23.93	3.27	69.21	36	60	6.84	1.39	42.81

- Character ID == coreference resolution
- Episode-level context > scene-level context

Table 9: Character identification results on our corpus using cluster remapping on the coreference resolution system results. FC: found clusters after remapping. EC: expected clusters from gold. UC: percentage of unknown clusters after remapping. UM: percentage of unknown mentions in the unknown clusters to all the mentions.

Chen, Henry and Jinho D. Choi. "Character Identification on Multiparty Conversation: Identifying Mentions of Characters in TV Shows"

TVSHOWGUESS: Character Comprehension

Who is P0 and Who is P1?

Sang, Yisi et al. "TVSHOWGUESS: Character Comprehension in Stories as Speaker Guessing"

9.93

21.85

33.12

8.61

22.52

1.99

27.15

12.58

15.23

22.52

32.45

36.42

31.13

TVSHOWGUESS: Character Comprehension

	The Stairwell		Evidence Type	Friends(%)	TBBT(%)
			Ling. Style	0.66	9.93
			Personality	7.28	21.85
			Fact	20.53	33.12
	Sheldon Amy		(Attribute)	2.65	8.61
So, after drin	nks with Bernadette, I get home, and Penny	(a)	(Relation)	16.56	22.52
calls to com	plain about her. And then while I'm talking to		(Status)	1.32	1.99
Penny, I get	a text from Bernadette.	_	Memory	36.42	27.15
			Inside-Background	33.11	12.58
	I am trying to prepare my lesson plan for Howard.		Inside-Mention	15.23	15.23
Memory	Why are you telling me this?	·	Exclusion	8.61	22.52
	taken 15 years, but high school is finally love them both, but I'm in the centre	2 	Dependence of Hist.	Friends(%)	TBBT(%)
	ove that even more.		No Dep.	53.64	32.45
		②	Direct Dep.	26.49	36.42

Memory from past interaction; P1 is Sheldon

Sang, Yisi et al. "TVSHOWGUESS: Character Comprehension in Stories as Speaker Guessing"

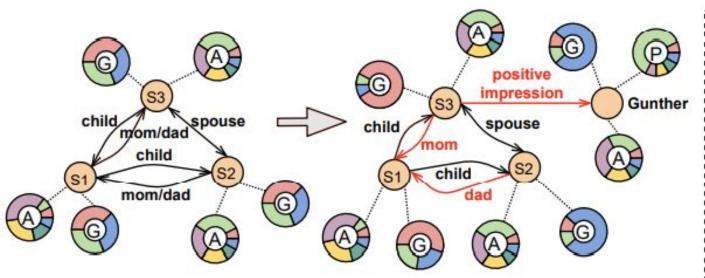
TVSHOWGUESS: Character Comprehension

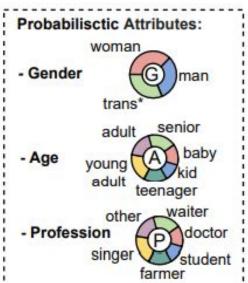
			TBBT(%)
	Ling. Style	0.66	9.93
	Personality	7.28	21.85
	Fact	20.53	33.12
	(Attribute)	2.65	8.61
(a)	(Relation)	16.56	22.52
	(Status)	1.32	1.99
	Memory	36.42	27.15
	Inside-Background	33.11	12.58
	Inside-Mention	15.23	15.23
	Exclusion	8.61	22.52
2 1	Dependence of Hist.	Friends(%)	TBBT(%)
20	No Dep.	53.64	32.45
9	Direct Dep.	26.49	36.42
_	Indirect Dep.	19.87	31.13
	(b) (a)	Personality Fact (Attribute) (Relation) (Status) Memory Inside-Background Inside-Mention Exclusion Dependence of Hist. No Dep. Direct Dep.	Personality 7.28 Fact 20.53 (Attribute) 2.65 (Relation) 16.56 (Status) 1.32 Memory 36.42 Inside-Background 33.11 Inside-Mention 15.23 Exclusion 8.61 Dependence of Hist. Friends(%) No Dep. 53.64 Direct Dep. 26.49

Sang, Yisi et al. "TVSHOWGUESS: Character Comprehension in Stories as Speaker Guessing"

Models for Character Comprehension in TVSHOWGUESS

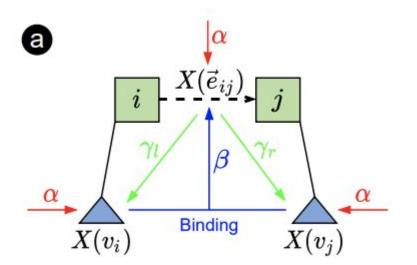
Custom	FRIENDS		TB	BT	Frasier		Gilmore_Girls		The_Office		Overall	
System	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
Random	35.23	31.59	33.08	37.79	34.74	31.61	36.43	38.90	44.30	46.71	36.79	36.59
Vanilla Longformer	67.79	60.63	61.58	63.95	85.11	82.06	79.84	74.52	70.92	71.60	72.55	69.72
repl with BERT	65.60	59.58	61.58	58.43	85.11	84.30	81.91	70.41	67.56	68.54	71.65	67.76
Our MR. BERT	77.01	73.20	62.60	62.50	90.07	82.51	83.98	78.63	70.92	74.41	76.82	74.52
- context	62.92	57.19	59.54	63.95	81.64	76.23	74.42	67.12	66.00	67.37	68.33	65.54
 reverse trick 	70.81	68.71	52.42	59.01	79.40	81.39	78.04	73.97	66.22	68.31	69.45	70.52
- fill-empty trick	74.33	68.56	58.27	63.37	86.10	78.48	72.87	69.86	68.90	73.71	72.28	70.92
Our Longformer-P	77.01	69.91	63.87	66.57	90.32	87.67	82.17	75.07	71.81	76.29	76.95	74.97
maxlen=1000	74.16	66.77	63.36	64.24	86.10	85.65	79.33	72.05	73.83	76.06	75.25	72.74
repl with P	68.12	58.83	61.32	63.95	82.63	76.91	68.48	65.75	72.48	71.83	70.49	66.79
Human*	98.68		89.82	-	-	_	-	-	-	-		


Sang, Yisi et al. "TVSHOWGUESS: Character Comprehension in Stories as Speaker Guessing"



Models for Character Comprehension in TVSHOWGUESS

Pros: Useful task/skill for agents: persona-specific annotations Cons: Not realistic: TBBT is highly scripted for satire Does not yet incorporate annotations into solving task


Social Relationship Inference in Dialogues

Qiu, Liang et al. "SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues"

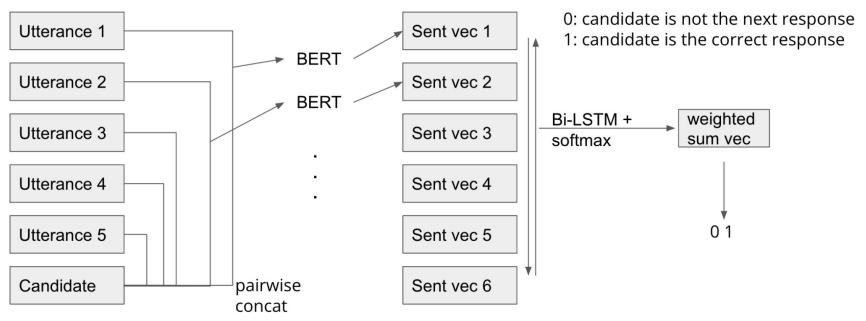
Social Relationship Inference in Dialogues

- a: infer social relationship between i,j; infer attributes of persons i,j
- β: re-estimate social relationships conditioned on inferred attributes
- y: re-infer attributes conditioned on social relationships

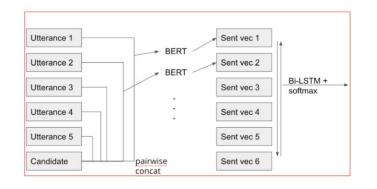
Qiu, Liang et al. "SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues"

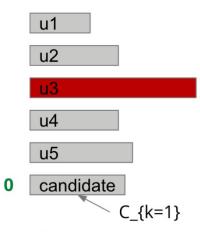
Evaluating SocAoG

			DialogI	MovieGraph			
		D	ev	Te	est	Dev	Test
	Methods	$\mathbf{F}1(\sigma)$	$\mathbf{F}1_c(\sigma)$	$\mathbf{F}1(\sigma)$	$\mathbf{F}1_c(\sigma)$	$\mathbf{F}1(\sigma)$	$\mathbf{F}1(\sigma)$
	BERT (Devlin et al., 2018)	59.4 (0.7)	54.7 (0.8)	57.9 (1.0)	53.1 (0.7)	50.6 (1.2)	53.6 (0.3)
	BERT _S (Yu et al., 2020)	62.2 (1.3)	57.0 (1.0)	59.5 (2.1)	54.2 (1.4)	50.7 (1.1)	53.6 (0.4)
Curren	t GDPNet (Xue et al., 2020b)	67.1 (1.0)	61.5 (0.8)	64.3 (1.1)	60.1 (0.9)	53.1 (1.1)	56.4 (0.8)
SotA	SimpleRE (Xue et al., 2020a)	68.2 (1.1)	63.4 (0.6)	66.7 (0.7)	63.3 (0.9)	55.2 (0.5)	58.1 (0.7)
	SocAoG _{reduced} (our method)	69.1 (0.4)	65.7 (0.5)	68.6 (0.9)	65.4 (1.1)	60.7 (0.4)	63.2 (0.3)
	SocAoG (our method)	69.5 (0.8)	66.1 (0.7)	69.1 (0.5)	66.5 (0.8)	60.1 (0.6)	64.1 (0.8)

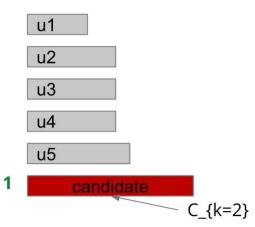

- Learning complex personas and relationships in just one step is difficult
- Persona attributes affect relations, and relations affect persona attributes

Qiu, Liang et al. "SocAoG: Incremental Graph Parsing for Social Relation Inference in Dialogues"

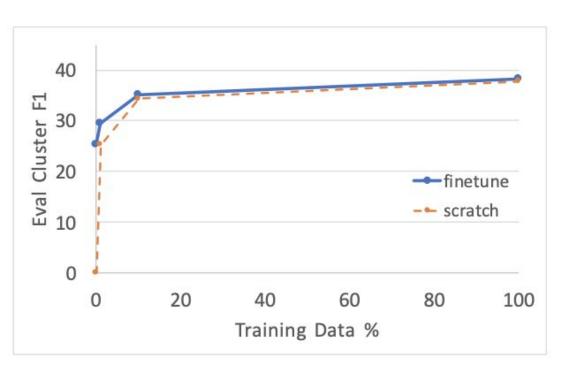


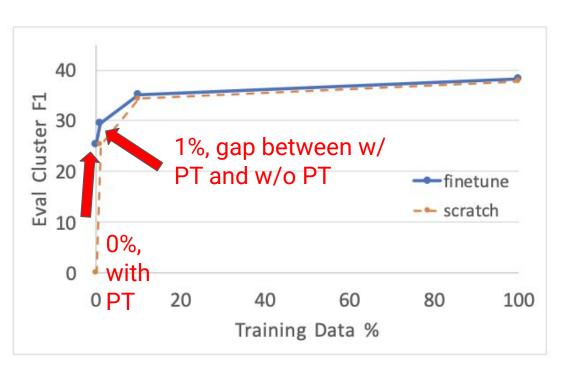

Zero-Shot Dialogue Disentanglement

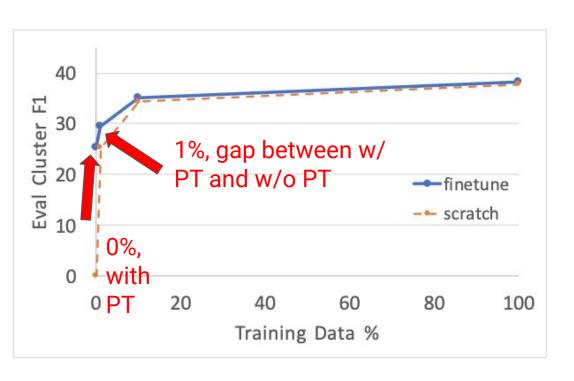
Pretraining on entangled response selection



Chi, Ta-Chung and Alex Rudnicky. "Zero-Shot Dialogue Disentanglement by Self-Supervised Entangled Response Selection"




Candidate is the correct next response



Candidate is NOT the correct next response

$$L_{joint} = (1 - w) * L_{res} + w * L_{attn}$$

Pros:

- First to ever consider zero-shot disentanglement
- practically useful

Cons:

 Not clear how well results will translate from Ubuntu IRC

Speaker-Aware Discourse Parsing (via Second Stage Pre-training)

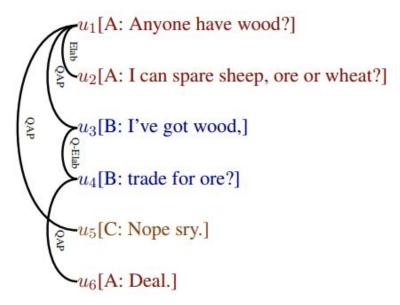
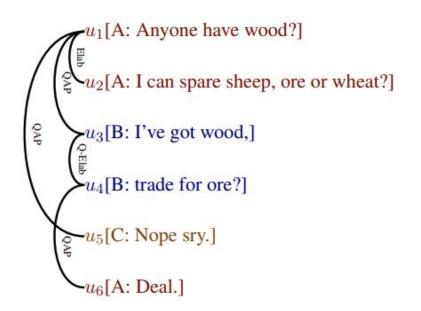
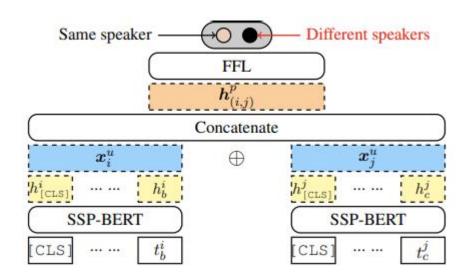
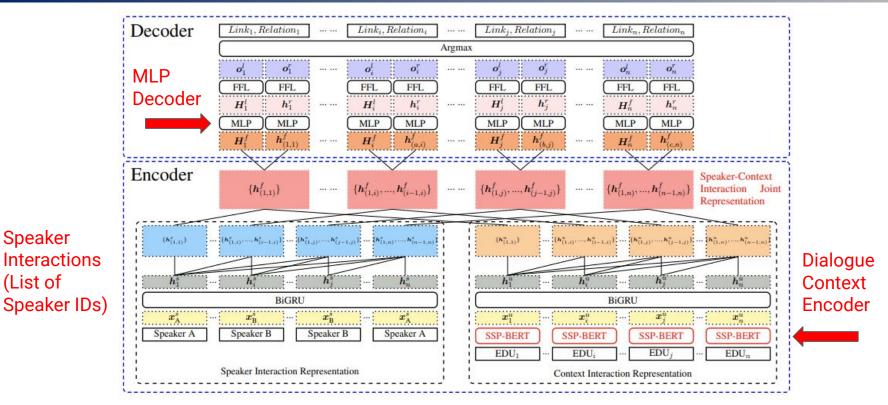


Figure 1: An example of a discourse dependency tree. u_1, u_2, u_3, u_4, u_5 refer to EDUs. "Q-Elab", "QAP", "Q-Elab", and "Elab" refer to discourse relations. "A", "B", and "C" are three speakers.

Yu, Nan et al. "Speaker-Aware Discourse Parsing on Multi-Party Dialogues"

Speaker-Aware Discourse Parsing (via Second Stage Pre-training)


Figure 1: An example of a discourse dependency tree. u_1, u_2, u_3, u_4, u_5 refer to EDUs. "Q-Elab", "QAP", "Q-Elab", and "Elab" refer to discourse relations. "A", "B", and "C" are three speakers.

Second Stage: discern whether utterances come from the same speaker or not

Yu, Nan et al. "Speaker-Aware Discourse Parsing on Multi-Party Dialogues"

Speaker-Aware Discourse Parsing

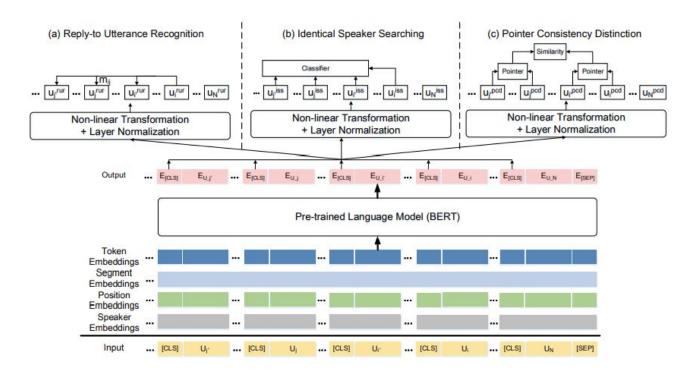
Yu, Nan et al. "Speaker-Aware Discourse Parsing on Multi-Party Dialogues"

Speaker Interactions

(List of

Speaker-Aware Discourse Parsing

Molweni: Difficult QA dataset with Discourse Structures


Takeaway:

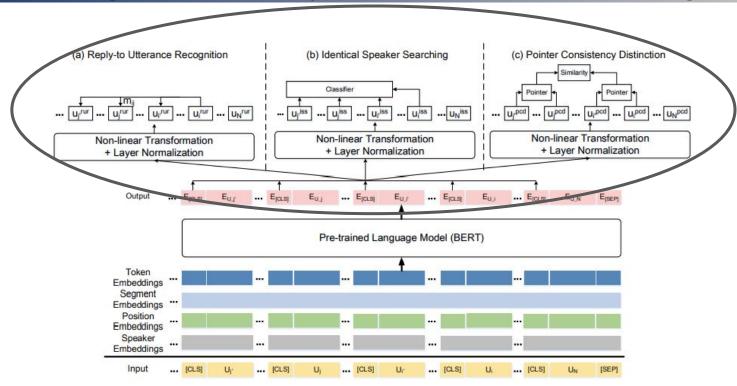
- speaker interactions are important
- who-says-what affects understanding of discourse structure

Models	Link	Link&Rel
Molw	eni	
Li et al. (2020)	78.1	54.8
Wang et al. (2021)	81.6	58.5
Liu and Chen (2021)	80.2	56.9
He et al. (2021)**	80.0	57.0
BERT	77.8	56.5
SSP-BERT + SCIJE	83.7	59.4
STA	C	
Shi and Huang (2019)	73.2	55.7
Wang et al. (2021)	73.5	57.3
Yang et al. (2021)	74.1	57.0
Liu and Chen (2021)	75.5	57.2
BERT	72.4	55.4
SSP-BERT + SCIJE	73.0	57.4

Yu, Nan et al. "Speaker-Aware Discourse Parsing on Multi-Party Dialogues"

MPC-BERT: Pre-Training for Multi-Party Conversation Understanding

Gu, Jia-Chen et al. "MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding"


MPC-BERT: Pre-Training for Multi-Party Conversation Understanding

Interlocutor Structure:

- Reply-to Utterance Recognition
- Identical Speaker Searching
- 3. Pointer
 Consistency
 Detection

Utterance Semantics:

- Masked Shared
 Utterance
 Restoration
- Shared Node Detection

Gu, Jia-Chen et al. "MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding"

MPC-BERT: Pre-Training for Multi-Party Conversation Understanding

Ubuntu IRC Addressee Recognition

	Hu et a	ıl. (2019)		016)				
			Lei	n-5	Len	n-10	Len-15	
	P@1	Acc.	P@1	Acc.	P@1	Acc.	P@1	Acc.
Preceding (Le et al., 2019)	-	N=	63.50	40.46	56.84	21.06	54.97	13.08
Subsequent (Le et al., 2019)	-	-	61.03	40.25	54.57	20.26	53.07	12.79
DRNN (Ouchi and Tsuboi, 2016)	-	: -	72.75	58.18	65.58	34.47	62.60	22.58
SIRNN (Zhang et al., 2018a)	-	-	75.98	62.06	70.88	40.66	68.13	28.05
W2W (Le et al., 2019)	-	n =	77.55	63.81	73.52	44.14	73.42	34.23
BERT (Devlin et al., 2019)	96.16	83.50	85.95	75.99	83.41	58.22	81.09	44.94
SA-BERT (Gu et al., 2020)	97.12	88.91	86.81	77.45	84.46	60.30	82.84	47.23
MPC-BERT	98.31	92.42	88.73	80.31	86.23	63.58	85.55	52.59
MPC-BERT w/o. RUR	97.75	89.98	87.51	78.42	85.63	62.26	84.78	50.83
MPC-BERT w/o. ISS	98.20	91.96	88.67	80.25	86.14	63.40	85.02	51.12
MPC-BERT w/o. PCD	98.20	91.90	88.51	80.06	85.92	62.84	85.21	51.17
MPC-BERT w/o. MSUR	98.08	91.32	88.70	80.26	86.21	63.46	85.28	51.23
MPC-BERT w/o. SND	98.25	92.18	88.68	80.25	86.14	63.41	85.29	51.39

All pre-training tasks are useful

Gu, Jia-Chen et al. "MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding"

Contents

1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction

4. Conclusions and Looking Ahead

How should agents adapt what they say in multiparty contexts?

- How should agents adapt what they say in multiparty contexts?
 - Multiparty-aware training approaches

- How should agents adapt what they say in multiparty contexts?
 - Multiparty-aware training approaches
 - o Approaches to make agents more sensible and empathetic

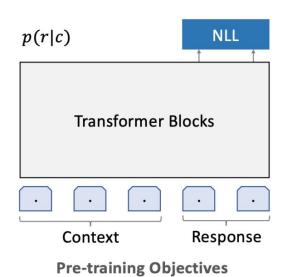
- How should agents adapt what they say in multiparty contexts?
 - Multiparty-aware training approaches
 - Approaches to make agents more sensible and empathetic
 - Approaches to incorporate contextual understanding into multimodal systems

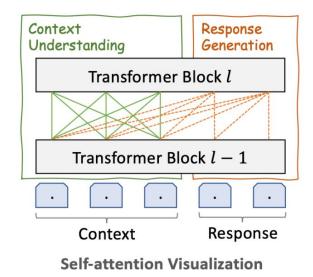
Contents

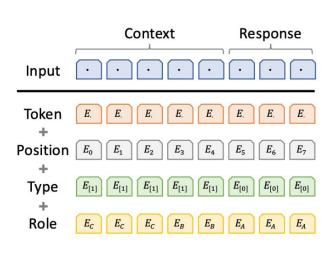
1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

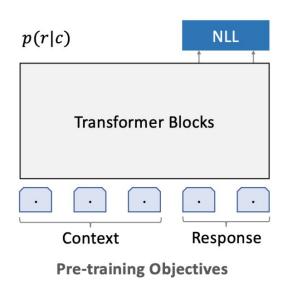
2. Multiparty Dialogue Understanding

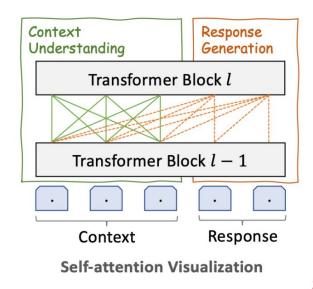

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

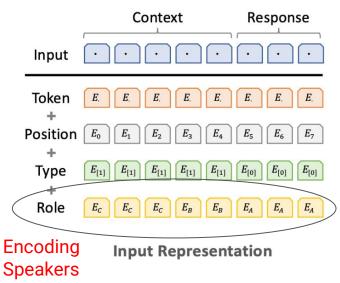

3. Multiparty Dialogue Generation


- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction
- 4. Conclusions and Looking Ahead

PLATO-XL: Large-Scale Pre-training for Dialogue Generation






Input Representation

Bao, Siqi et al. "PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation"

PLATO-XL: Large-Scale Pre-training for Dialogue Generation

Bao, Siqi et al. "PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation"

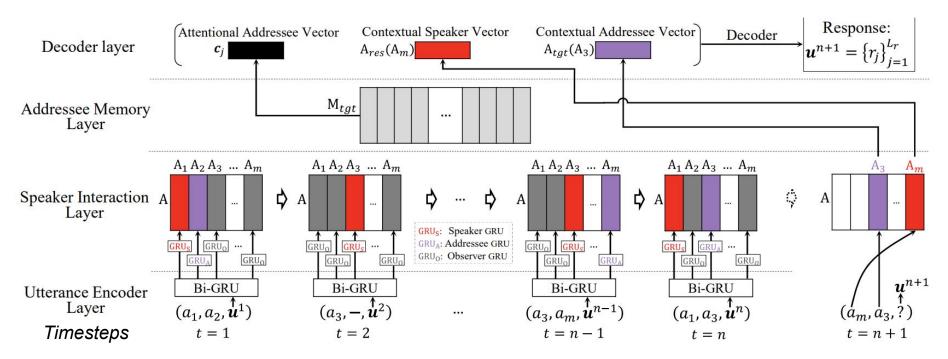
PLATO-XL Performance

English Models	# Params	Coherence	Inconsistency↓	Informativeness	Hallucination ↓	Engagingness
DialoGPT	345M	0.792	0.508	0.692	0.516	0.220
PLATO-2	1.6B	1.792	0.068	1.732	0.152	1.540
Blender	2.7B	1.768	0.084	1.692	0.128	1.500
PLATO-XL	11B	1.908	0.024	1.800	0.024	1.800

Table 1: English self-chat evaluation results with best value written in bold.

Chinese Models	# Params	Coherence	Inconsistency↓	Informativeness	Hallucination ↓	Engagingness
CDial-GPT	95M	1.188	0.104	0.908	0.388	0.460
PLATO-2	336M	1.876	0.016	1.872	0.056	1.880
ProphetNet-X	379M	1.344	0.048	1.216	0.296	0.940
EVA	2.8B	1.196	0.032	1.016	0.356	0.600
PLATO-XL	11B	1.952	0.004	1.948	0.016	1.940

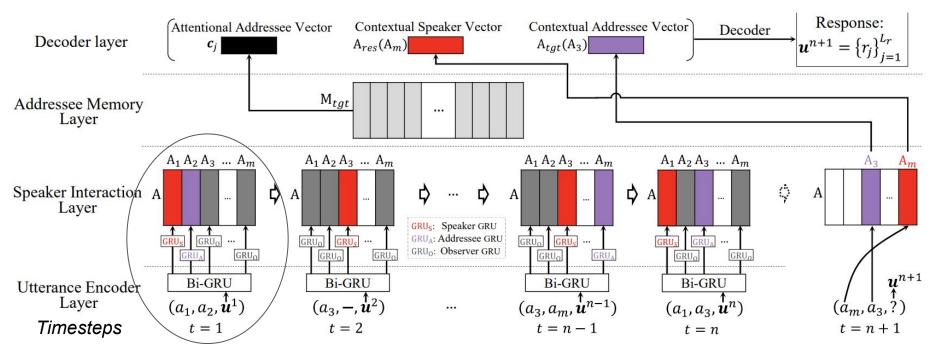
Table 2: Chinese self-chat evaluation result, with best value written in bold.


Pros:

 generalizable approach with resource useful for community

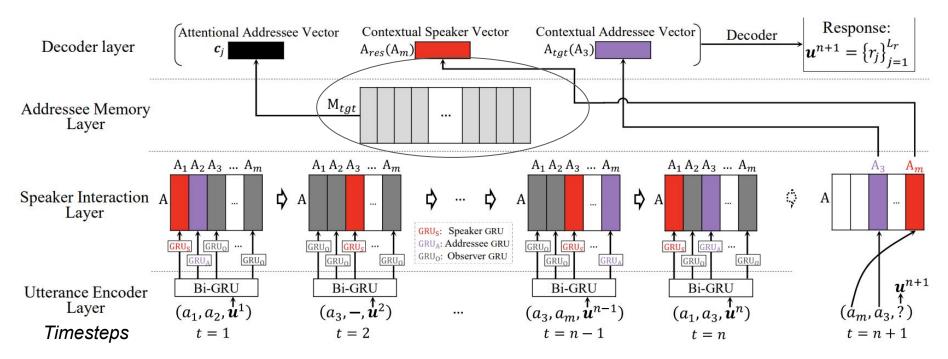
Cons:

no real multiparty generation


Bao, Siqi et al. "PLATO-XL: Exploring the Large-scale Pre-training of Dialogue Generation"

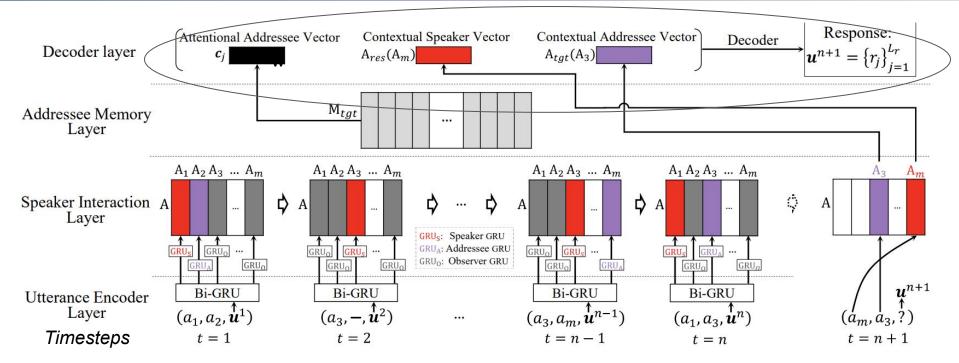
(spkr: 1, adr: 2, utt: 1) (spkr: 3, adr: n/a, utt: 2)

(spkr: m, adr: 3, utt: target)



(spkr: 1, adr: 2, utt: 1) (spkr: 3, adr: n/a, utt: 2)

(spkr: m, adr: 3, utt: target)



(spkr: 1, adr: 2, utt: 1) (spkr: 3, adr: n/a, utt: 2)

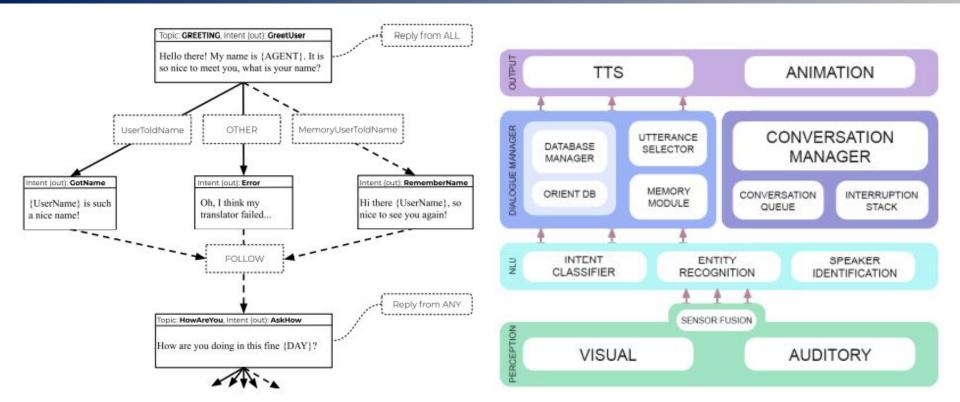
(spkr: m, adr: 3, utt: target)

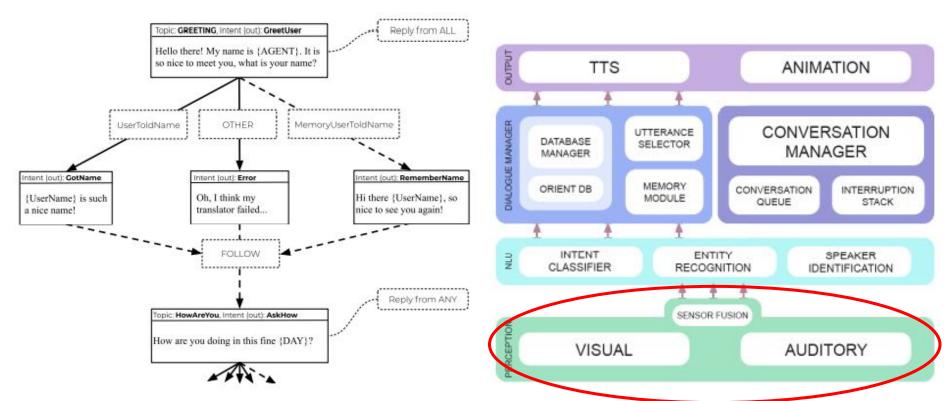
(spkr: 1, adr: 2, utt: 1) (spkr: 3, adr: n/a, utt: 2)

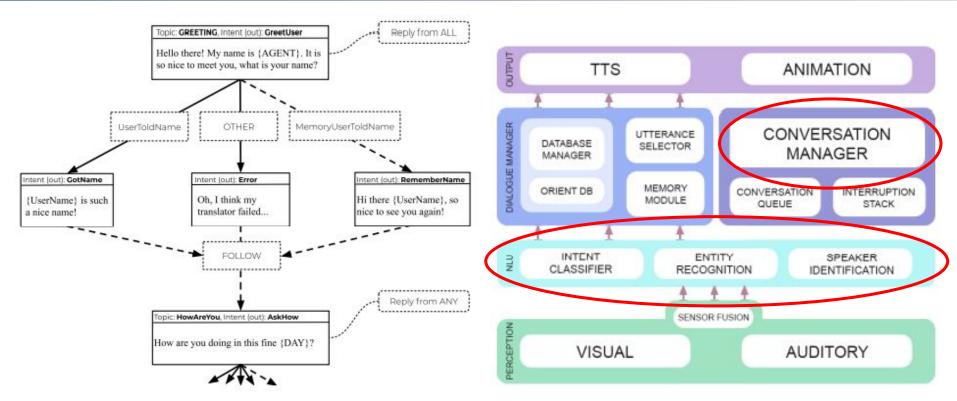
(spkr: m, adr: 3, utt: target)

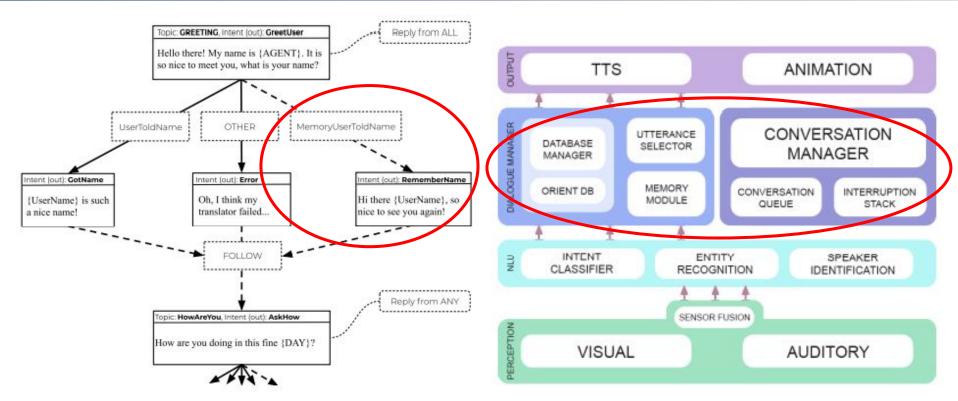
Evaluating Interlocutor-aware Context

Model	Refe	renced	Unreferenced			
Model	BLEU	ROUGE	Length	#Noun		
Seq2Seq	8.86	7.62	9.48	1.24		
Persona Model	9.12	7.38	11.04	1.29		
VHRED	9.38	7.65	10.25	1.55		
ICRED (ours)	10.63	8.73	11.34	1.68		


Interlocutor-aware context yields more "correct" responses


Pros:


- generation in multiparty context
- transferable approach


Cons:

 no human evaluation

Interaction	Turn	Speaker	Utterance
1	7a	Agent	Listen, P1's name, I'm not one to jump to conclusions, but I'm fairly certain you're not from exoplanet
			L-98 59b. You're an Earth dweller, right?
1	7b	P2	Yes
1	8a	Agent	The fact that you're a human and not an alien was a dead giveaway, although the label of alien is relative if you want to be technical about it. What part of this weird alien planet are you from, anyway?
1	8b	P2	I'm from Indiana
1	9a	Agent	I've never been there. In fact, the only place I've been in this solar system is <i>Author's city</i> . Listen <i>P1</i> , this is not me fishing for an invite or anything. What are you up to this weekend?
1	9b	P1	I'm going to Disneyland.
3	18a	Agent	If I remember correctly, you mentioned you were going to Disneyland this weekend. Feel free to invite me if you feel so inclined!
3	18b	Agent	Until next time! Goodbye, P1 and P2!

Interaction	Turn	Speaker	Utterance
1	7a	Agent	Listen, P1's name, I'm not one to jump to conclusions, but I'm fairly certain you're not from exoplanet L-98 59b. You're an Earth dweller, right?
1	7b	P2	Yes
1	8a	Agent	The fact that you're a human and not an alien was a dead giveaway, although the label of alien is relative if you want to be technical about it. What part of this weird alien planet are you from, anyway?
1	8b	P2	I'm from Indiana
1	9a	Agent	I've never been there. In fact, the only place I've been in this solar system is <i>Author's city</i> . Listen <i>P1</i> , this is not me fishing for an invite or anything. What are you up to this weekend?
1	9b	P1	I'm going to Disneyland.
3	18a	Agent	If I remember correctly, you mentioned you were going to Disneyland this weekend. Feel free to invite me if you feel so inclined!
3	18b	Agent	Until next time! Goodbye, P1 and P2!

Pros:

- Real users compared to static response generation
- Connects many aspects of multiparty understanding

Cons:

- small sample size member correctly, you mentioned you were going to Disneyland this weekend. Feel free to invite
- no quantitative evaluation
- limited technical details and novelty

Contents

1. Overview: What are Multiparty Conversations?

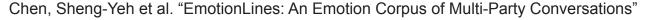
- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction


4. Conclusions and Looking Ahead

EmotionLines

speaker utterance emotion	Rachel Hi Joey! What are you doing here? joy			
speaker	Joey			
utterance	Uhh, well I've got an audition down the street and I spilled sauce all over the front of my shirt. You got an extra one?			
emotion	neutral			
speaker	Rachel			
utterance emotion	Yeah, sure. Umm here. neutral			

- 1000 Friends conversations
- 1000 FB Messenger conversations
- Annotations from 7 emotions

EmotionLines

		WA	UWA	Neu	Joy	Sad	Fea	Ang	Sur	Non
CNN	Friends	59.2	45.2	64.3	60.2	41.2	21.9	46.6	61.5	20.6
	EmotionPush*	71.5	41.7	80.8	46.9	43.7	0.0	27.0	53.8	40.0
CNN-BiLSTM	Friends	63.9	43.1	74.7	61.8	45.9	12.5	46.6	51.0	8.8
	EmotionPush*	77.4	39.4	87.0	60.3	28.7	0.0	32.4	40.9	26.7

Chen, Sheng-Yeh et al. "EmotionLines: An Emotion Corpus of Multi-Party Conversations"

EmotionLines

Pros:

Realistic conversations

Cons:

- Low IAA
- Emotions aren't the only aspect of social chitchat
- No response generaiton

		WA	UWA	Neu	Joy	Sad	Fea	Ang	Sur	Non
CNN	Friends	59.2	45.2	64.3	60.2	41.2	21.9	46.6	61.5	20.6
	EmotionPush*	71.5	41.7	80.8	46.9	43.7	0.0	27.0	53.8	40.0
CNN-BiLSTM	Friends	63.9	43.1	74.7	61.8	45.9	12.5	46.6	51.0	8.8
	EmotionPush*	77.4	39.4	87.0	60.3	28.7	0.0	32.4	40.9	26.7

Chen, Sheng-Yeh et al. "EmotionLines: An Emotion Corpus of Multi-Party Conversations"

MPDD includes annotations for social relationships between each speaker/listener

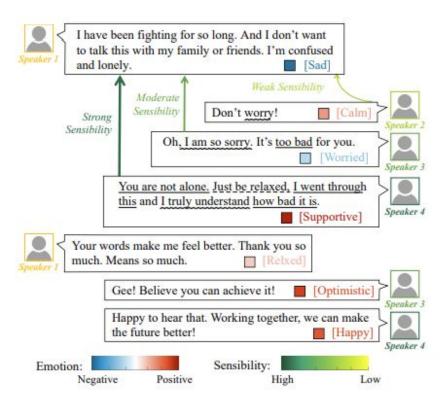
Field	Seniority	Relationship	%	Field	Seniority	Relationship	%
Field		parent	7.41	Company	elder	boss	5.81
	elder	parent-in-law	0.58		noor	colleague	7.10
		grandparent	0.36 Company		peer	partner	1.19
		other superior	1.11		junior	subordinate	5.47
Family		spouse	9.66			couple	6.50
	peer	brothers and sisters	5.77			friend	25.44
	85	other peer	2.29			enemy	3.05
		child	7.31	Others	peer	consignor	bss 5.81 rague 7.10 tner 1.19 dinate 5.47 uple 6.50 end 25.44 emy 3.05 ignor 2.10 ignee 2.08 nger 3.25
	junior	son/daughter-in-law	0.59			consignee	
	Juinoi	grandchild	0.36			stranger	
		other inferior	1.13	C		unknown	0.07
School	elder	teacher	0.31				
	peer	classmate	0.79				
	junior	student	0. 27				9

Utterance	1
Speaker	左母 "mother Zuo"
Content	那個憨女人有什麼值得送的,正鵬這個 人也真是的! "What is Zheng-Peng thinking? He has no need to send the silly woman home."
Emotion	disgust
Listener	左父 "father Zuo": spouse
Utterance	3
Speaker	左正鵬 "Zheng-Peng Zuo"
Content	爸、媽,我回來啦! "Dad, Mom, I am back!"
Emotion	neutral
Listener	左父 "father Zuo": child 左母 "mother Zuo": child

- "Mother Zuo" is speaking to "Father Zuo"
- Mother is the spouse of Father

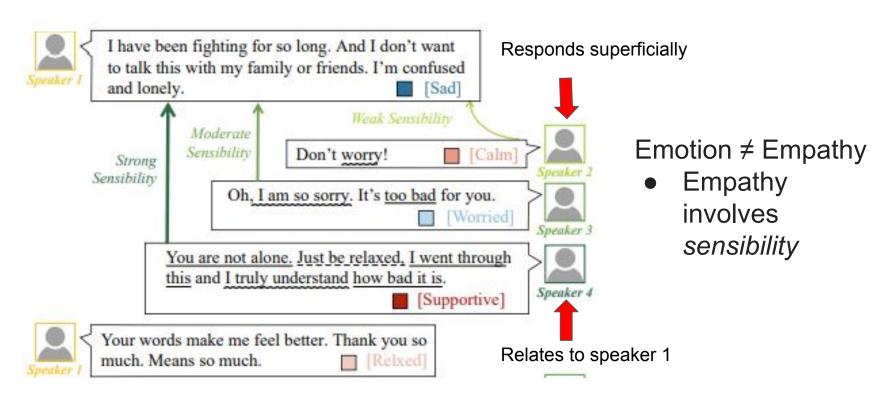
- Zheng-Peng Zuo is speaking to Father Zuo and Mother Zuo
- Zheng-Peng Zuo is the child of the listeners

	Encoder	Responded utterance	Baseline	w/ emotion
Dalatian abia	CNN	w/o w/	.3121 .3483	.3139 .3494
Relationship	BERT	w/o w/	.3646 .4384	.3653 .4504
g	CNN	w/o w/	.7169 .7247	.7167 .7240
Seniority	BERT	w/o w/	.7259 .7662	.7268 .7398
C Field	CNN	w/o w/	.5937 .6831	.5994 .6868
Social Field	BERT	w/o w/	.6473 .7543	.6314 .7491

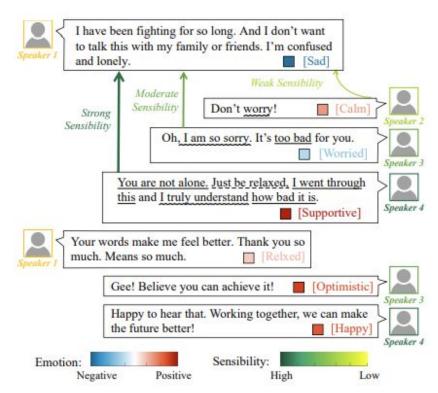

Pros:

 addresses EmotionLines gaps (social relations; Mandarin)

Cons:


- Motivated by generation, but no actual generation
- Not clear if TV shows are reflective of real speech

	Encoder	Responded utterance	Baseline	w/ emotion
	CNN	w/o w/	.3121 .3483	.3139 .3494
Relationship	BERT	w/o w/	.3646 .4384	.3653 .4504
Si.	CNN	w/o w/	.7169 .7247	.7167 .7240
Seniority	BERT	w/o w/	.7259 .7662	.7268 .7398
Conint Field	CNN	w/o w/	.5937 .6831	.5994 .6868
Social Field	BERT	w/o w/	.6473 .7543	.6314 .7491



Multiparty dialogue utterances are not sequential

Zhu, Lingyu et al. "Multi-Party Empathetic Dialogue Generation: A New Task for Dialog Systems"

Zhu, Lingyu et al. "Multi-Party Empathetic Dialogue Generation: A New Task for Dialog Systems"

- Emotions change dynamically
- Participant's sensibility is fixed ("static")
- SDMPED: graph network
 - temporal relationships, dynamic emotions, static sensibility representations

Zhu, Lingyu et al. "Multi-Party Empathetic Dialogue Generation: A New Task for Dialog Systems"

Auto

	eval		eval		eval		eval			
Model					-S					
Metrics	ROUGE-L	AVG BLEU	Emp.	Rel.	Flu.	ROUGE-L	AVG BLEU	Emp.	Rel.	Flu.
MReCoSa	10.31	2.58	2.20	3.09	3.91	10.74	3.90	2.22	3.34	4.00
Multi-Trans	6.59	3.86	2.81	3.13	3.92	8.10	4.22	2.76	3.41	4.20
MoEL	6.83	2.99	3.11	3.07	3.89	8.44	3.13	3.00	3.28	4.13
EmpDG	10.86	4.26	3.19	3.39	4.30	11.53	4.52	3.32	3.55	4.30
Caire	11.58	4.85	3.17	3.62	4.37	12.48	5.49	3.30	3.89	4.46
Random prompt	11.36	4.68	3.10	3.65	4.10	12.04	5.41	3.44	3.81	4.40
SDMPED w/o S	12.06	5.57	3.29	3.66	4.30	13.47	5.88	3.51	3.81	4.53
SDMPED	12.87	6.35	3.40	3.74	4.39	14.16	7.37	3.71	3.86	4.59

Human

Pros: thoughtful reformulation of the original takes on empathy and emotional dialogue **Cons**: dataset not released; human evaluation of their approach not statistically significant?

Zhu, Lingyu et al. "Multi-Party Empathetic Dialogue Generation: A New Task for Dialog Systems"

Διιτο

Human

Contents

1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

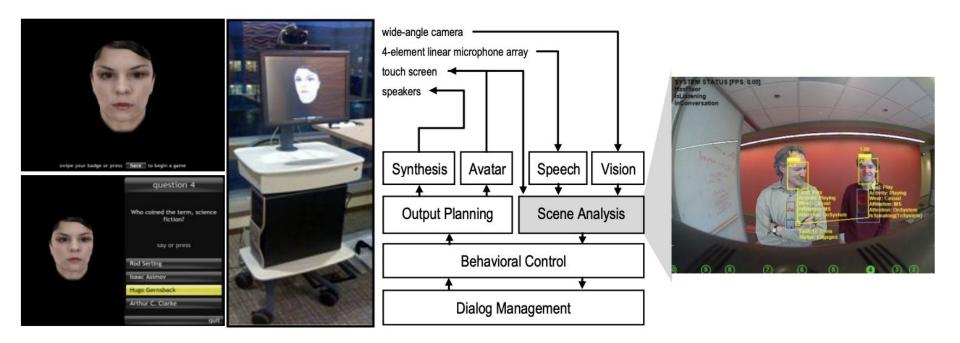
3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction
- 4. Conclusions and Looking Ahead

Difficulties of Embodied Conversational Agents

- dynamic, multiparty
 - the audience/participants changes
- situated interaction
 - physical environment is important context for organizing interaction

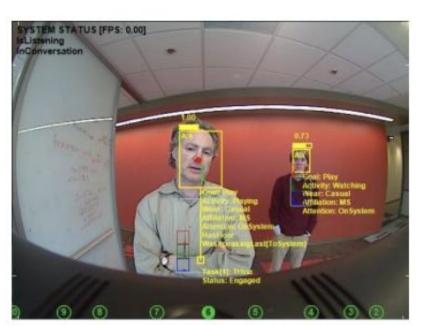
Difficulties of Embodied Conversational Agents


- dynamic, multiparty
 - the audience/participants changes
- situated interaction
 - physical environment is important context for organizing interaction

Requires:

- sense/reason about engagement state of participants in scene
- make high-level engagement control decisions about who to engage/disengage with
- 3. execute/signal decisions to participants

Mixed-Initiative Multiparty Engagement in the Open-World

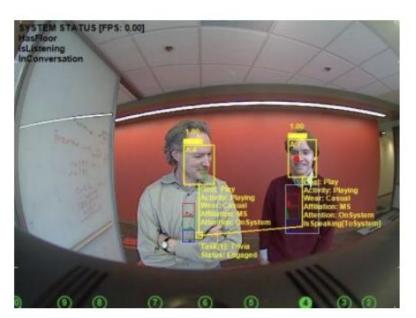


Bohus, Dan and Eric Horvitz. "Models for Multiparty Engagement in Open-World Dialog"

Mixed-Initiative Multiparty Engagement in the Open-World

first person engages - around time t2

bystander appears - prior to t₃


Bohus, Dan and Eric Horvitz. "Models for Multiparty Engagement in Open-World Dialog"

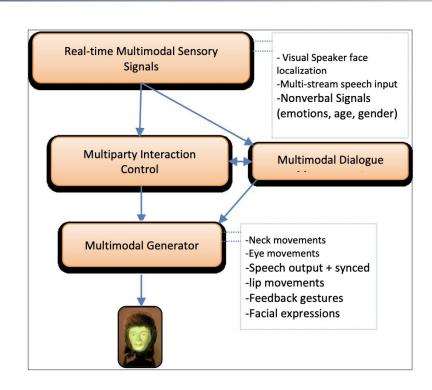
Mixed-Initiative Multiparty Engagement in the Open-World

system engages bystander $\sim t_5$

participants play together $\sim t_{14}$

Bohus, Dan and Eric Horvitz. "Models for Multiparty Engagement in Open-World Dialog"

Furhat: Situated Multiparty Social Chat



Moubayed, Samer AI et al. "Multimodal Multiparty Social Interaction with the Furhat Head"

Furhat: Situated Multiparty Social Chat

Figure 3. A snapshot of the face tracker and the microphone tracker in action.

Moubayed, Samer AI et al. "Multimodal Multiparty Social Interaction with the Furhat Head"

Contents

1. Overview: What are Multiparty Conversations?

- a. Definitions
- b. Issues Unique to Multiparty Dialogue

2. Multiparty Dialogue Understanding

- a. Corpora for Multiparty Dialogue Understanding
- b. Methods for Multiparty Dialogue Understanding

3. Multiparty Dialogue Generation

- a. Methods for Pre-training and Infusing Multiparty Awareness
- b. Empathetic and Emotional Dialogue
- c. Multimodal Interaction

4. Conclusions and Looking Ahead

What's next?

- Many dialogue understanding tasks
 - Some are likely trivial in 2023, others not

What's next?

- Many dialogue understanding tasks
 - Some are likely trivial in 2023, others not
- Not so many multi-party dialogue generation studies
 - we cannot treat multiparty conversations as dyadic ones
 - teach skills via pre-training, speaker-level embeddings
 - "correct" response generation in IRC is not the end-goal

What's next?

- Many dialogue understanding tasks
 - Some are likely trivial in 2023, others not
- Not so many multi-party dialogue generation studies
 - we cannot treat multiparty conversations as dyadic ones
 - teach skills via pre-training, speaker-level embeddings
 - "correct" response generation in IRC is not the end-goal

Future: practically useful agents

- mediating arguments?
- group emotional support?
- conversation facilitation in group texts?
- embodied Alexa?

Thank you!

Questions?